CS 446

spring 2026
 
All Classes

Credit: 3 OR 4 hours.

Principles and applications of machine learning. Main paradigms and techniques, including discriminative and generative methods, reinforcement learning: linear regression, logistic regression, support vector machines, deep nets, structured methods, dimensionality reduction, k-means, Gaussian mixtures, expectation maximization, Markov decision processes, and Q-learning. Application areas such as natural language and text understanding, speech recognition, computer vision, data mining, and adaptive computer systems, among others.

Same as ECE 449. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: CS 225; One of MATH 225, MATH 257, MATH 415, MATH 416, ASRM 406 or BIOE 210; one of CS 361, STAT 361, ECE 313, MATH 362, MATH 461, MATH 463, STAT 400 or BIOE 310.

Closed
Section Status Closed
Open
Section Status Open
Pending
Section Status Pending
Open (Restricted)
Section Status Open (Restricted)
Unknown
Section Status Unknown
Detail Status CRN Type Section Time Day Location Instructor