STAT 437
spring 2026
All Classes
Unsupervised Learning
Credit: 3 OR 4 hours.
Unsupervised learning is a type of machine learning that deals with finding patterns in data without the use of labeled examples. Two major unsupervised learning techniques, clustering and dimensionality reduction, will be covered with a focus on methods, evaluation metrics, and interpretation of results. The methodologies enable discovery of and inference about hidden insights contained in high-dimensional unlabeled data. Applications on real and artificial datasets are emphasized using programming languages such as Python.
3 undergraduate hours. 4 graduate hours. Prerequisite: STAT 410 and either MATH 415 or MATH 257.

- Section Status Closed

- Section Status Open

- Section Status Pending

- Section Status Open (Restricted)

- Section Status Unknown
Section Status updates every 10 minutes.
| Detail | Status | CRN | Type | Section | Time | Day | Location | Instructor |
|---|