STAT 431

spring 2026
 
All Classes

Credit: 3 OR 4 hours.

Introduction to the concepts and methodology of Bayesian statistics, for students with fundamental knowledge of mathematical statistics. Topics include Bayes' rule, prior and posterior distributions, conjugacy, Bayesian point estimates and intervals, Bayesian hypothesis testing, noninformative priors, practical Markov chain Monte Carlo, hierarchical models and model graphs, and more advanced topics as time permits. Implementations in R and specialized simulation software.

Same as ASRM 453. 3 undergraduate hours. 4 graduate hours. Prerequisite: STAT 410 and knowledge of R.

Closed
Section Status Closed
Open
Section Status Open
Pending
Section Status Pending
Open (Restricted)
Section Status Open (Restricted)
Unknown
Section Status Unknown
Detail Status CRN Type Section Time Day Location Instructor