STAT 431
spring 2026
All Classes
Applied Bayesian Analysis
Credit: 3 OR 4 hours.
Introduction to the concepts and methodology of Bayesian statistics, for students with fundamental knowledge of mathematical statistics. Topics include Bayes' rule, prior and posterior distributions, conjugacy, Bayesian point estimates and intervals, Bayesian hypothesis testing, noninformative priors, practical Markov chain Monte Carlo, hierarchical models and model graphs, and more advanced topics as time permits. Implementations in R and specialized simulation software.
Same as ASRM 453. 3 undergraduate hours. 4 graduate hours. Prerequisite: STAT 410 and knowledge of R.

- Section Status Closed

- Section Status Open

- Section Status Pending

- Section Status Open (Restricted)

- Section Status Unknown
Section Status updates every 10 minutes.
| Detail | Status | CRN | Type | Section | Time | Day | Location | Instructor |
|---|