CS 544
| Course | Section | CRN | Date | Day | Start Time | End Time | Room | Exam Type |
|---|
Credit: 4 hours.
Applications of continuous and discrete optimization to problems in computer vision and machine learning, with particular emphasis on large-scale algorithms and effective approximations: gradient-based learning; Newton's method and variants, applied to structure from motion problems; the augmented Lagrangian method and variants; interior-point methods; SMO and other specialized algorithms for support vector machines; flows and cuts as examples of primal-dual methods; dynamics programming, hidden Markov models, and parsing: 0-1 quadratic forms, max-cut, and Markov random-fields solutions.
4 graduate hours. No professional credit. Prerequisite: One of CS 450, CSE 401, ECE 491, or MATH 450; one of CS 473, CSE 414 or MATH 473.

- Section Status Closed

- Section Status Open

- Section Status Pending

- Section Status Open (Restricted)

- Section Status Unknown
-
-
- CS 101
- CS 102
- CS 105
- CS 107
- CS 124
- CS 128
- CS 173
- CS 199
- CS 210
- CS 211
- CS 222
- CS 225
- CS 233
- CS 277
- CS 307
- CS 340
- CS 341
- CS 357
- CS 361
- CS 374
- CS 397
- CS 402
- CS 403
- CS 407
- CS 410
- CS 411
- CS 412
- CS 413
- CS 415
- CS 421
- CS 425
- CS 431
- CS 433
- CS 434
- CS 435
- CS 437
- CS 438
- CS 440
- CS 441
- CS 443
- CS 444
- CS 445
- CS 446
- CS 448
- CS 450
- CS 461
- CS 463
- CS 467
- CS 468
- CS 473
- CS 477
- CS 482
- CS 483
- CS 484
- CS 491
- CS 493
- CS 494
- CS 497
- CS 498
- CS 499
- CS 500
- CS 510
- CS 511
- CS 512
- CS 521
- CS 522
- CS 523
- CS 524
- CS 525
- CS 526
- CS 527
- CS 533
- CS 534
- CS 536
- CS 543
- CS 544
- CS 555
- CS 562
- CS 565
- CS 568
- CS 571
- CS 574
- CS 576
- CS 584
- CS 586
- CS 588
- CS 591
- CS 597
- CS 598
- CS 599
"/> Section is Open
"/> Section is Open with Restrictions
"/> Section is Closed
"/> Section is Pending
"/> Section is availability is unknown
| Detail | Status | CRN | Type | Section | Time | Day | Location | Instructor |
|---|