BIOE 483

fall 2024
 
All Classes

Credit: 3 OR 4 hours.

The frontier of biomedical imaging is computed imaging where multi-dimensional images must be reconstructed from measured data that is otherwise not meaningful to human observers. In this course, computational image reconstruction techniques will be developed and employed across a broad range of radiographic, magnetic resonance, and nuclear imaging modalities. General imaging and detection principles common to all computational modalities will be covered in context of specific biomedical imaging scenarios. X-ray computed tomography will be covered in depth and in the context of the imaging science principles presented the co-requisites; this also includes practical concerns about computing resources and modern GPU-based computing. The physics of magnetic resonance imaging will be presented and related to specific mathematical issues of image reconstruction and under-sampled measurement space. Positron emission tomography (PET) will be covered and specific clinical issues discussed in terms of reconstruction algorithm and parameter choices.

3 undergraduate hours. 4 graduate hours. Prerequisite: BIOE 205, BIOE 210, ECE 380/BIOE 380. Concurrent enrollment in BIOE 485 and BIOE 580; or instructor approval.

Closed
Section Status Closed
Open
Section Status Open
Pending
Section Status Pending
Open (Restricted)
Section Status Open (Restricted)
Unknown
Section Status Unknown
Detail Status CRN Type Section Time Day Location Instructor