ECE 543

spring 2026
 
All Classes

Credit: 4 hours.

Advanced graduate course on modern probabilistic theory of adaptive and learning systems. The following topics will be covered; basics of statistical decision theory; concentration inequalities; supervised and unsupervised learning; empirical risk minimization; complexity-regularized estimation; generalization bounds for learning algorithms; VC dimension and Rademacher complexities; minimax lower bounds; online learning and optimization. Along with the general theory, the course will discuss applications of statistical learning theory to signal processing, information theory, and adaptive control. Basic prerequisites include probability and random processes, calculus, and linear algebra. Other necessary material and background will be introduced as needed. Prerequisite: ECE 534 or equivalent.

Closed
Section Status Closed
Open
Section Status Open
Pending
Section Status Pending
Open (Restricted)
Section Status Open (Restricted)
Unknown
Section Status Unknown
Detail Status CRN Type Section Time Day Location Instructor