IE 370
spring 2022
All Classes
Stochastic Processes and Applications
Credit: 3 hours.
Introduction to stochastic processes with applications in decision-making under uncertainty. Topics include newsvendor problem, discrete-time Markov chain (including classification of states, stationary distribution, absorbing states), Poisson processes (including time-homogenous, time-nonhomogeneous, thinning Poisson), continuous-time Markov chain (including Markov property, generator matrix, stationary distribution), queuing theory (including M/M/k queue, open Jackson network), and Markov decision processes (including finite-horizon models, infinite-horizon models).

- Section Status Closed

- Section Status Open

- Section Status Pending

- Section Status Open (Restricted)

- Section Status Unknown
Section Status updates every 10 minutes.
| Detail | Status | CRN | Type | Section | Time | Day | Location | Instructor |
|---|