CS 540

fall 2022
 
All Classes

Credit: 4 hours.

A rigorous mathematical course covering foundational analyses of the approximation, optimization, and generalization properties of Deep Neural Networks. Topics include: constructive and non-constructive approximations with one hidden layer; benefits of depth; optimization in the NTK regime; maximum margin optimization outside the NTK regime; Rademacher complexity, VC dimensino, and covering number bounds for ReLU networks. Evaluation is primarily based on homeworks, with a smaller project component. The course goal is to prepare students perform their own research in the field.

4 graduate hours. No professional credit. Prerequisite: Basic linear algebra, probability, proof-writing, and statistics required. Real analysis recommended.

Closed
Section Status Closed
Open
Section Status Open
Pending
Section Status Pending
Open (Restricted)
Section Status Open (Restricted)
Unknown
Section Status Unknown
Detail Status CRN Type Section Time Day Location Instructor