Statistics

STAT 430 **Topics in Applied Statistics** credit: 3 OR 4 hours.
Formulation and analysis of mathematical models for random phenomena; extensive involvement with the analysis of real data; and instruction in statistical and computing techniques as needed. 3 undergraduate hours. 4 graduate hours. May be repeated with approval. Prerequisite: STAT 410 or STAT 420; or consent of instructor.

<table>
<thead>
<tr>
<th>CRN</th>
<th>Type</th>
<th>Section</th>
<th>Time</th>
<th>Days</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>60247</td>
<td>Lecture</td>
<td>JDG</td>
<td>02:00 PM - 02:50 PM</td>
<td>MWF</td>
<td>2233 - Everitt Laboratory</td>
<td>Douglas, J</td>
</tr>
</tbody>
</table>

Credit Hours: 4 hours
Multivariate Analysis Data Sci
Restricted to Graduate - Urbana-Champaign.

TOPIC: Multivariate Analysis for Data Science Description: This is a course on applied multivariate analysis with particular attention to model-based clustering and classification methods for data science. Prerequisites: Linear Algebra, STAT 410. Credit not given for students that have already completed STAT 571. For Statistics course registration information: go.illinois.edu/StatisticsRegistration

| 60249| Lecture | JDU | 02:00 PM - 02:50 PM | MWF | 2233 - Everitt Laboratory | Douglas, J |

Credit Hours: 3 hours
Multivariate Analysis Data Sci
Restricted to Undergrad - Urbana-Champaign.

TOPIC: Multivariate Analysis for Data Science Description: This is a course on applied multivariate analysis with particular attention to model-based clustering and classification methods for data science. Prerequisites: Linear Algebra, STAT 410. Credit not given for students that have already completed STAT 571. For Statistics course registration information: go.illinois.edu/StatisticsRegistration

| 69110| Lecture-Discussion | JJB | 10:00 AM - 10:50 AM | MWF | 432 - Armory | Balamuta, J |

Credit Hours: 3 hours
Fundamentals of Deep Learning
Restricted to Undergrad - Urbana-Champaign.
Topic: Fundamentals of Deep Learning Deep Learning methods are rapidly becoming ingrained within everyday life. These methods strive to reveal patterns within the data. This course provides a foundation for developing and applying deep learning models through a study of its theory and application using a leading modeling framework. Students should be proficient in programming. Pre-Requisite: STAT 432 (possibly co-requisite)