Computer Science

CS 491 Seminar
Credit: 0 TO 4 hours.
Seminar on topics of current interest as announced in the Class Schedule. 0 to 4 undergraduate hours. 0 to 4 graduate hours. Approved for S/U grading only. May be repeated in the same or separate terms if topics vary to a maximum of 4 hours. Prerequisite: As specified for each topic offering, see Class Schedule or departmental course description.

<table>
<thead>
<tr>
<th>CRN</th>
<th>Type</th>
<th>Section</th>
<th>Time</th>
<th>Days</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>54144</td>
<td>Lecture</td>
<td>CB</td>
<td>05:00 PM - 06:50 PM</td>
<td>M</td>
<td>301 - Coordinated Science Lab</td>
<td>Bashir, M Campbell, R</td>
</tr>
<tr>
<td>64481</td>
<td>Laboratory</td>
<td>WF</td>
<td>01:00 PM - 01:50 PM</td>
<td>M</td>
<td>-</td>
<td>Beckman, A Marinov, D Thakore, U</td>
</tr>
</tbody>
</table>

Credit Hours: 2 hours
IAT Seminar
Course meets in 301 CSL Topic: Information Assurance and Trust Seminar. This course is an undergraduate seminar for students admitted to the Illinois Cyber Security Scholar Program. In addition, this course would be open and serve as an orientation seminar to all college of engineering undergraduate student interested in topics of information assurance and trust. The seminars will feature information assurance subject matter expert guest speakers from industry and government, community leaders, distinguished external researchers, faculty, and students discussing both the technical challenges and limitations of IA. Standard information assurance topics such as authentication, data integrity, ethics, and cyber security will be covered.

Credit Hours: 1 hours
Adv Competitive Algorithm Prog
This course introduces advanced algorithms and data structures concepts useful for competing effectively in the ACM International Collegiate Programming Contest (ICPC) World Finals and similar contests. This course assumes familiarity with and proficiency in solving intermediate-difficulty algorithmic programming problems using dynamic programming, graph algorithms, mathematics, computational geometry, combinatorial games, and standard library data structures. This course is recommended for students hoping to learn how to solve difficult problems that appear in the ACM ICPC World Finals contest and later stages of multi-stage programming contests. The course requires completion of short problem sets and participation in practice contests.