Physics

PHYS 513 **Quantum Optics & Information** credit: 4 hours.
Experimental and theoretical fundamentals of quantum information, using nonclassical features of quantum physics (wave-particle duality, superposition, and entanglement) to surpass the information-processing capabilities of classical systems. Underlying fundamental quantum phenomena, including tests of nonlocality, quantum erasers, the quantum Zeno effect, squeezed light, multi-particle interference, state transformations of the Bloch sphere, and decoherence; quantum cryptography and teleportation; quantum information theory; quantum computation algorithms and techniques for error correction; experimental "qubit" systems. Prerequisite: Recommended: PHYS 580.

<table>
<thead>
<tr>
<th>CRN</th>
<th>Type</th>
<th>Section</th>
<th>Time</th>
<th>Days</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>53201</td>
<td>Lecture</td>
<td>A</td>
<td>03:30 PM - 04:50 PM</td>
<td>TR</td>
<td>158 - Loomis Laboratory</td>
<td>Kwiat, P</td>
</tr>
</tbody>
</table>